Correction: Bone Fracture Pre-Ischemic Stroke Exacerbates Ischemic Cerebral Injury in Mice

نویسندگان

  • Liang Wang
  • Shuai Kang
  • Dingquan Zou
  • Lei Zhan
  • Zhengxi Li
  • Wan Zhu
  • Hua Su
چکیده

Ischemic stroke is a devastating complication of bone fracture. Bone fracture shortly after stroke enhances stroke injury by augmenting inflammation. We hypothesize that bone fracture shortly before ischemic stroke also exacerbates ischemic cerebral injury. Tibia fracture was performed 6 or 24 hours before permanent middle cerebral artery occlusion (pMCAO) on C57BL/6J mice or Ccr2RFP/+Cx3cr1GFP/+ mice that have the RFP gene knocked into one allele of Ccr2 gene and GFP gene knocked into one allele of Cx3cr1 gene. Behavior was tested 3 days after pMCAO. Infarct volume, the number of CD68+ cells, apoptotic neurons, bone marrow-derived macrophages (RFP+), and microgila (GFP+) in the peri-infarct region were quantified. Compared to mice subjected to pMCAO only, bone fracture 6 or 24 hours before pMCAO increased behavioral deficits, the infarct volume, and the number of CD68+ cells and apoptotic neurons in the peri-infarct area. Both bone marrow-derived macrophages (CCR2+) and microglia (CX3CR1+) increased in the peri-infarct regions of mice subjected to bone fracture before pMCAO compared to stroke-only mice. The mice subjected to bone fracture 6 hours before pMCAO had more severe injury than mice that had bone fracture 24 hours before pMCAO. Our data showed that bone fracture shortly before stroke also increases neuroinflammation and exacerbates ischemic cerebral injury. Our findings suggest that inhibition of neuroinflammation or management of stroke risk factors before major bone surgery would be beneficial for patients who are likely to suffer from stroke.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Macrophage-Derived Angiopoietin-Like Protein 2 Exacerbates Brain Damage by Accelerating Acute Inflammation after Ischemia-Reperfusion

Ischemic stroke is a leading cause of death and disability worldwide. Several reports suggest that acute inflammation after ischemia-reperfusion exacerbates brain damage; however, molecular mechanisms underlying this effect remain unclear. Here, we report that MAC-3-positive immune cells, including infiltrating bone marrow-derived macrophages and activated microglia, express abundant angiopoiet...

متن کامل

Intensification of brain injury and blood-brain barrier permeability by short-term hypertension in experimental model of brain ischemia/reperfusion

Introduction: Arterial hypertension is one of the causes of stroke, and as one of the vasculotoxic conditions intensifies ischemic stroke complications. The aim of the present study was to analyze the effects of short-term cerebral hypertension on ischemia/reperfusion injury and pathogenesis of ischemic stroke. Methods: The experiments were performed on three groups of rats (N=36) Sham, cont...

متن کامل

Role of Neutrophils in Exacerbation of Brain Injury After Focal Cerebral Ischemia in Hyperlipidemic Mice.

BACKGROUND AND PURPOSE Inflammation-related comorbidities contribute to stroke-induced immune responses and brain damage. We previously showed that hyperlipidemia exacerbates ischemic brain injury, which is associated with elevated peripheral and cerebral granulocyte numbers. Herein, we evaluate the contribution of neutrophils to the exacerbation of ischemic brain injury. METHODS Wild-type mi...

متن کامل

Bone Marrow Stromal Cells With Exercise and Thyroid Hormone Effect on Post-Stroke Injuries in Middle-aged Mice

Introduction: Based on our previous findings, the treatment of stem cells alone or in combination with thyroid hormone (T3) and mild exercise could effectively reduce the risk of stroke damage in young mice. However, it is unclear whether this treatment is effective in aged or middle-aged mice. Therefore, this study designed to assess whether combination of Bone Marrow Stromal Cells (BMSCs) wit...

متن کامل

Noggin protects against ischemic brain injury in rodents.

BACKGROUND AND PURPOSE Bone morphogenetic proteins and their receptors are expressed in adult brains, and their expression levels increase after cerebral ischemia. The brain also expresses an inhibitor of bone morphogenetic protein signaling, noggin, but the role of noggin in ischemic disease outcome has not been studied. METHODS We used transgenic mice overexpressing noggin to assess whether...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016